Deviation from the matching law reflects an optimal strategy involving learning over multiple timescales
نویسندگان
چکیده
منابع مشابه
Learning fast and slow: deviations from the matching law can reflect an optimal strategy under uncertainty
Behavior which deviates from our normative expectations often appears irrational. A classic example concerns the question of how choice should be distributed among multiple alternatives. The so-called matching law predicts that the fraction of choices made to any option should match the fraction of total rewards earned from the option. This choice strategy can maximize reward in a stationary re...
متن کاملa paradigm shift away from method-wise teaching to strategy-wise teaching: an investigation of reconstructive strategy versus communicative strategy
چکیده: هدف اصلی این مطالعه ی توصیفی تحقیقی در حقیقت تلاشی پساروش-گرا به منظور رسیدن به نتیجه ای منطقی در انتخاب مناسبترین راهکار آموزشی بر گرفته از چارچوب راهبردی مطرح شده توسط والدمر مارتن بوده که به بهترین شکل سازگار و مناسب با سامانه ی آموزشی ایران باشد. از این رو، دو راهکار آموزشی، راهکار ارتباطی و راهکار بازساختی، برای تحقیق و بررسی انتخاب شدند. صریحاً اینکه، در راستای هدف اصلی این پژوهش، ر...
15 صفحه اولThe Actor-Critic Learning Is Behind the Matching Law: Matching Versus Optimal Behaviors
The ability to make a correct choice of behavior from various options is crucial for animals' survival. The neural basis for the choice of behavior has been attracting growing attention in research on biological and artificial neural systems. Alternative choice tasks with variable ratio (VR) and variable interval (VI) schedules of reinforcement have often been employed in studying decision maki...
متن کاملLearning Multiple Timescales in Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are powerful architectures for sequence learning. Recent advances on the vanishing gradient problem have led to improved results and an increased research interest. Among recent proposals are architectural innovations that allow the emergence of multiple timescales during training. This paper explores a number of architectures for sequence generation and predict...
متن کاملStrategy Transfer Learning via Parametric Deviation Sets
Accurately reasoning about agents’ actions in strategic settings is a challenging artificial intelligence task. Many difficulties in learning to perform such reasoning arise due to the uncertainty in both agents’ motives and the strategic games being played. In this paper, we address the problem of learning from observations of the agents’ behavior in some games to predict play in different, bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2019
ISSN: 2041-1723
DOI: 10.1038/s41467-019-09388-3